Juventud

Tras graduarse, siendo el único de su promoción que no consiguió el grado de maestro, Einstein no pudo encontrar un trabajo en la Universidad, aparentemente, por la irritación que causaba entre sus profesores. El padre de su compañero de clase Marcel Grossmann le ayudó a encontrar un trabajo en la Oficina Confederal de la Propiedad Intelectual de Berna, una oficina de patentes, en 1902, donde trabajó hasta 1909. Su personalidad le causó también problemas con el director de la Oficina, quien le enseñó a "expresarse correctamente".

En esta época Einstein se refería con amor a su mujer Mileva como "una persona que es mi igual y tan fuerte e independiente como yo". Abram Joffe, en su biografía de Einstein, argumenta que durante este periodo fue ayudado en sus investigaciones por Mileva. Esto se contradice con otros biógrafos como Ronald W. Clark, quien afirma que Einstein y Mileva llevaban una relación distante que brindaba a Einstein la soledad necesaria para concentrarse en su trabajo.

En mayo de 1904, Einstein y Mileva tuvieron un hijo de nombre Hans Albert Einstein. Ese mismo año consiguió un trabajo permanente en la Oficina de Patentes. Poco después finalizó su doctorado presentando una tesis titulada Una nueva determinación de las dimensiones moleculares, que es un trabajo de 17 páginas que surgió de una conversación con Michell Besso mientras se tomaban una taza de té; cuando Einstein iba a echarle azúcar al té, preguntó a Besso: «¿Crees que el cálculo de las dimensiones de las moléculas de azúcar podría ser una buena tesis de doctorado?». En 1905 escribió cuatro artículos fundamentales sobre la física de pequeña y gran escala. En el primero de ellos explicaba el movimiento browniano, en el segundo el efecto fotoeléctrico y los dos restante desarrollaban la relatividad especial y la equivalencia masa-energía. El primero de ellos le valió el grado de doctor por la Universidad de Zurich, y su trabajo sobre el efecto fotoeléctrico le haría merecedor del Premio Nobel de Física en 1921 "por sus trabajos sobre el movimiento browniano y su interpretación del efecto fotoeléctrico", suponiendo todos ellos un cambio radical en la imagen que la ciencia ofrece del universo[cita requerida]. Estos artículos fueron enviados a la revista Annalen der Physik y son conocidos generalmente como los artículos del año maravilloso.

Madurez

En 1908 fue contratado en la Universidad de Berna, Suiza, como profesor y conferenciante (Privatdozent) sin cargas administrativas. Einstein y Mileva tuvieron un nuevo hijo, Eduard, nacido el 28 de julio de 1910. Poco después la familia se mudó a Praga, donde Einstein ocupó una plaza de Professor, el equivalente a Catedrático en la Universidad Alemana de Praga. En esta época trabajó estrechamente con Marcel Grossmann y Otto Stern. También comenzó a llamar al tiempo matemático cuarta dimensión.

En 1914, justo antes de la Primera Guerra Mundial, Einstein se estableció en Berlín y fue escogido miembro de la Academia Prusiana de Ciencias y director del Instituto de Física Káiser Wilhelm. Su pacifismo, sus actividades políticas sionistas y sus orígenes judíos, irritaban a los nacionalistas alemanes[cita requerida]. Las teorías de Einstein comenzaron a sufrir una campaña organizada de descrédito[cita requerida].

Su matrimonio tampoco iba bien. El 14 de febrero de 1919 se divorció de Mileva y algunos meses después, el 2 de junio de 1919 se casó con una prima suya, Elsa Loewenthal, cuyo apellido de soltera era Einstein: Loewenthal era el apellido de su primer marido, Max Loewenthal. Elsa era tres años mayor que Einstein y le había cuidado tras sufrir una crisis nerviosa combinada con problemas del sistema digestivo.

Einstein y Elsa no tuvieron hijos. El destino de la hija de Albert y Mileva, Lieserl, nacida antes de que sus padres se casaran o encontraran trabajo, es desconocido. Algunos piensan que murió en la infancia y otros afirman que fue entregada en adopción[cita requerida]. De sus dos hijos, el segundo, Eduard, sufría esquizofrenia y fue internado durante largos años muriendo en una institución para el tratamiento de las enfermedades mentales. Albert nunca le visitó[cita requerida].

El primero, Hans Albert, se mudó a California, donde llegó a ser profesor universitario aunque con poca interacción con su padre.

Tras la llegada de Adolf Hitler al poder en 1933, las expresiones de odio por Einstein alcanzaron niveles más elevados[cita requerida]. Fue acusado por el régimen nacionalsocialista de crear una "Física judía" en contraposición con la "Física alemana" o "Física aria"[cita requerida]. Algunos físicos nazis, incluyendo físicos tan notables como los premios Nobel de Física Johannes Stark y Philipp Lenard, intentaron desacreditar sus teorías.[3] Los físicos que enseñaban la Teoría de la relatividad como, por ejemplo, Werner Heisenberg, eran incluidos en listas negras políticas[cita requerida]. Einstein abandonó Alemania en 1933 con destino a Estados Unidos, donde se instaló en el Instituto de Estudios Avanzados de Princeton y se nacionalizó estadounidense en 1940. Durante sus últimos años Einstein trabajó por integrar en una misma teoría las cuatro Fuerzas Fundamentales, tarea aún inconclusa. Se cuenta que cuando Einstein se encontraba en su lecho de muerte segundos antes de morir pronuncio unas palabras en alemán que la enfermera que lo cuidaba en esos momentos, la estadounidense Alberta Roszel no pudo entender y cuando finalmente murió, en su pizarra estaban las ecuaciones aun sin concluir para integrar dichas fuerzas[cita requerida]. Einstein murió en Princeton, New Jersey, el 18 de abril de 1955.

Trayectoria científica

Los artículos de 1905

En 1904 Einstein consiguió una posición permanente en la Oficina de Patentes Suiza. En 1905 finalizó su doctorado presentando una tesis titulada Una nueva determinación de las dimensiones moleculares. Ese mismo año escribió cuatro artículos fundamentales sobre la física de pequeña y gran escala. En ellos explicaba el movimiento browniano, el efecto fotoeléctrico y desarrollaba la relatividad especial y la equivalencia masa-energía. El trabajo de Einstein sobre el efecto fotoeléctrico le proporcionaría el Premio Nobel de física en 1921. Estos artículos fueron enviados a la revista "Annalen der Physik" y son conocidos generalmente como los artículos del "Annus Mirabilis" (del Latín: Año extraordinario). La Unión internacional de física pura y aplicada junto con la UNESCO conmemoraron 2005 como el Año mundial de la física[4] celebrando el centenario de publicación de estos trabajos.

Movimiento browniano

El primero de sus artículos de 1905, titulado Sobre el movimiento requerido por la teoría cinética molecular del calor de pequeñas partículas suspendidas en un líquido estacionario, cubría sus estudios sobre el movimiento browniano.

El artículo explicaba el fenómeno haciendo uso de las estadísticas del movimiento térmico de los átomos individuales que forman un fluido. El movimiento browniano había desconcertado a la comunidad científica desde su descubrimiento unas décadas atrás. La explicación de Einstein proporcionaba una evidencia experimental incontestable sobre la existencia real de los átomos. El artículo también aportaba un fuerte impulso a la mecánica estadística y a la teoría cinética de los fluidos, dos campos que en aquella época permanecían controvertidos.

Antes de este trabajo los átomos se consideraban un concepto útil en física y química, pero la mayoría de los científicos no se ponían de acuerdo sobre su existencia real. El artículo de Einstein sobre el movimiento atómico entregaba a los experimentalistas un método sencillo para contar átomos mirando a través de un microscopio ordinario.

Wilhelm Ostwald, uno de los líderes de la escuela antiatómica, comunicó a Arnold Sommerfeld que había sido transformado en un creyente en los átomos por la explicación de Einstein del movimiento browniano.

Efecto fotoeléctrico

El segundo artículo se titulaba Un punto de vista heurístico sobre la producción y transformación de luz. En él Einstein proponía la idea de "quanto" de luz (ahora llamados fotones) y mostraba cómo se podía utilizar este concepto para explicar el efecto fotoeléctrico.

La teoría de los cuantos de luz fue un fuerte indicio de la dualidad onda-corpúsculo y de que los sistemas físicos pueden mostrar tanto propiedades ondulatorias como corpusculares. Este artículo constituyó uno de los pilares básicos de la mecánica cuántica. Una explicación completa del efecto fotoeléctrico solamente pudo ser elaborada cuando la teoría cuántica estuvo más avanzada. Por este trabajo, y por sus contribuciones a la física teórica, Einstein recibió el Premio Nobel de Física de 1921.

Relatividad especial

 

 

Una de las fotografías tomadas del eclipse de 1919 durante la expedición de Arthur Eddington, la cual confirmó las predicciones de Einstein acerca de la fuerza o luz gravitacional.

El tercer artículo de Einstein de ese año se titulaba Zur Elektrodynamik bewegter Körper ("Sobre la electrodinámica de cuerpos en movimiento"). En este artículo Einstein introducía la teoría de la relatividad especial estudiando el movimiento de los cuerpos y el electromagnetismo en ausencia de la fuerza de interacción gravitatoria.

La relatividad especial resolvía los problemas abiertos por el experimento de Michelson y Morley en el que se había demostrado que las ondas electromagnéticas que forman la luz se movían en ausencia de un medio. La velocidad de la luz es, por lo tanto, constante y no relativa al movimiento. Ya en 1894 George Fitzgerald había estudiado esta cuestión demostrando que el experimento de Michelson y Morley podía ser explicado si los cuerpos se contraen en la dirección de su movimiento. De hecho, algunas de las ecuaciones fundamentales del artículo de Einstein habían sido introducidas anteriormente (1903) por Hendrik Lorentz, físico holandés, dando forma matemática a la conjetura de Fitzgerald.

Esta famosa publicación está cuestionada como trabajo original de Einstein, debido a que en ella omitió citar toda referencia a las ideas o conceptos desarrolladas por estos autores así como los trabajos de Poincaré. En realidad Einstein desarrollaba su teoría de una manera totalmente diferente a estos autores deduciendo hechos experimentales a partir de principios fundamentales y no dando una explicación fenomenológica a observaciones desconcertantes. El mérito de Einstein estaba por lo tanto en explicar lo sucedido en el experimento de Michelson y Morley como consecuencia final de una teoría completa y elegante basada en principios fundamentales y no como una explicación ad-hoc o fenomenológica de un fenómeno observado.

Su razonamiento se basó en dos axiomas simples: En el primero reformuló el principio de simultaneidad, introducido por Galileo siglos antes, por el que las leyes de la física deben ser invariantes para todos los observadores que se mueven a velocidades constantes entre ellos, y el segundo, que la velocidad de la luz es constante para cualquier observador. Este segundo axioma, revolucionario, va más allá de las consecuencias previstas por Lorentz o Poincaré que simplemente relataban un mecanismo para explicar el acortamiento de uno de los brazos del experimento de Michelson y Morley. Este postulado implica que si un destello de luz se lanza al cruzarse dos observadores en movimiento relativo, ambos verán alejarse la luz produciendo un círculo perfecto con cada uno de ellos en el centro. Si a ambos lados de los observadores se pusiera un detector, ninguno de los observadores se pondría de acuerdo en qué detector se activó primero (se pierden los conceptos de tiempo absoluto y simultaneidad).

La teoría recibe el nombre de "teoría especial de la relatividad" o "teoría restringida de la relatividad" para distinguirla de la Teoría general de la relatividad, que fue introducida por Einstein en 1915 y en la que se consideran los efectos de la gravedad y la aceleración.

Equivalencia masa-energía [editar]

La famosa ecuación es mostrada en Taipei 101 durante el evento del año mundial de la física en 2005.

El cuarto artículo de aquel año se titulaba Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig y mostraba una deducción de la ecuación de la relatividad que relaciona masa y energía. En este artículo se decía que "la variación de masa de un objeto que emite una energía L es , donde V era la notación para la velocidad de la luz usada por Einstein en 1905.

Esta ecuación implica que la energía E de un cuerpo en reposo es igual a su masa m multiplicada por la velocidad de la luz al cuadrado:

E = mc2

Muestra cómo una partícula con masa posee un tipo de energía, "energía en reposo", distinta de las clásicas energía cinética y energía potencial. La relación masa - energía se utiliza comúnmente para explicar cómo se produce la energía nuclear; midiendo la masa de núcleos atómicos y dividiendo por el número atómico se puede calcular la energía de enlace atrapada en los núcleos atómicos. Paralelamente, la cantidad de energía producida en la fisión de un núcleo atómico se calcula como la diferencia de masa entre el núcleo inicial y los productos de su desintegración multiplicada por la velocidad de la luz al cuadrado.

Relatividad general

Artículo principal: Teoría General de la Relatividad

En noviembre de 1915 Einstein presentó una serie de conferencias en la Academia de Ciencias de Prusia en las que describió la teoría de la relatividad general. La última de estas charlas concluyó con la presentación de la ecuación que reemplaza a la ley de gravedad de Newton. En esta teoría todos los observadores son considerados equivalentes y no únicamente aquellos que se mueven con una velocidad uniforme. La gravedad no es ya una fuerza o acción a distancia, como era en la gravedad newtoniana, sino una consecuencia de la curvatura del espacio-tiempo. La teoría proporcionaba las bases para el estudio de la cosmología y permitía comprender características esenciales del Universo, muchas de las cuales no serían descubiertas sino con posterioridad a la muerte de Einstein.

La relatividad general fue obtenida por Einstein a partir de razonamientos matemáticos, experimentos hipotéticos (Gedanken experiment) y rigurosa deducción matemática sin contar realmente con una base experimental. El principio fundamental de la teoría era el denominado principio de equivalencia. A pesar de la abstracción matemática de la teoría, las ecuaciones permitían deducir fenómenos comprobables. En 1919 Arthur Eddington fue capaz de medir, durante un eclipse, la desviación de la luz de una estrella pasando cerca del Sol, una de las predicciones de la relatividad general. Cuando se hizo pública esta confirmación la fama de Einstein se incrementó enormemente y se consideró un paso revolucionario en la física. Desde entonces la teoría se ha verificado en todos y cada uno de los experimentos y verificaciones realizados hasta el momento.

A pesar de su popularidad, o quizás precisamente por ella, la teoría contó con importantes detractores entre la comunidad científica que no podían aceptar una física sin un Sistema de referencia absoluto.

Estadísticas de Bose-Einstein

Artículo principal: Estadística de Bose-Einstein

En 1924 Einstein recibió un artículo de un joven físico indio, Satyendra Nath Bose, describiendo a la luz como un gas de fotones y pidiendo la ayuda de Einstein para su publicación. Einstein se dio cuenta de que el mismo tipo de estadísticas podían aplicarse a grupos de átomos y publicó el artículo, conjuntamente con Bose, en alemán, la lengua más importante en física en la época. Las estadísticas de Bose-Einstein explican el comportamiento de grupos de partículas con spin entero, es decir, que pueden estar en el mismo sitio en un momento dado bosones

La Teoría de Campo Unificada

Einstein dedicó sus últimos años de trabajo a la búsqueda de una de las más importantes teorías de la física, la llamada Teoría de Campo Unificada.

La búsqueda de Einstein después de su teoría de la relatividad generalizada, consistió primeramente en una serie muchos intentos de generalizar su teoría de gravitación para lograr unificar y resumir las leyes fundamentales de la física, específicamente la gravitación y el electromagnetismo. En el año 1950, él mostró esta "teoría unificada de campo" en un artículo titulado "Encima de la Teoría Generalizada de la Gravitación" (En inglés escrito "On the Generalized Theory of Gravitation") de una famosa revista llamada "Scientific American" (Einstein 1950).

Aunque Albert Einstein fue famoso en el mundo por sus trabajos en la física teórica, fue de a poco aislándose en su investigación, y sus intentos lamentablemente no tuvieron éxito. Persiguiendo la unificación de las fuerzas fundamentales, Albert ignoró algunos importantes desarrollos en la física (pero también los desarrollos en la física lo ignoraron él), esto ha sido notablemente visible en el tema de las fuerzas nuclear fuerte y nuclear débil, las cuales no se entendieron bien sino después de quince años de la muerte de Einstein (cerca del año 1970) mediante numerosos experimentos en física a muy altas energías. Los recientes intentos propuestos por la teoría de cuerdas y las "teorías de supersimetría", muestran que aún sobrevive su ímpetu de alcanzar demostrar la gran teoría de la unificación, la cual unifica las leyes de la física.

Actividad política

Albert Einstein tuvo siempre una inclinación hacia la política y al compromiso social como científico, interesándose profundamente por las relaciones entre ciencia y sociedad[cita requerida]. Fue cofundador del Partido Liberal Democrático alemán. Con el auge del movimiento nacional-socialista en Alemania, Einstein dejó su país y se nacionalizó estadounidense. En plena Segunda Guerra Mundial apoyó una iniciativa de Robert Oppenheimer para iniciar el programa de desarrollo de armas nucleares conocido como Proyecto Manhattan, ya que consideró esta la única forma de amedrentar a los gobiernos alemán y japonés[cita requerida]. Pero Einstein siempre quiso que estas armas nucleares no fueran utilizadas[cita requerida].

En mayo de 1949, Monthly Review publicó (en Nueva York) un artículo suyo bajo el título de ¿Por qué el socialismo? en el que reflexiona sobre la historia,[5] las conquistas y las consecuencias de la "anarquía económica de la sociedad capitalista", artículo que hoy sigue teniendo vigencia. Una parte muy citada del mismo habla del papel de los medios privados en relación a las posibilidades democráticas de los países:

El capital privado tiende a concentrarse en pocas manos, en parte debido a la competencia entre los capitalistas, y en parte porque el desarrollo tecnológico y el aumento de la división del trabajo animan la formación de unidades de producción más grandes a expensas de las más pequeñas. El resultado de este proceso es una oligarquía del capital privado cuyo enorme poder no se puede controlar con eficacia incluso en una sociedad organizada políticamente de forma democrática. Esto es así porque los miembros de los cuerpos legislativos son seleccionados por los partidos políticos, financiados en gran parte o influidos de otra manera por los capitalistas privados quienes, para todos los propósitos prácticos, separan al electorado de la legislatura. La consecuencia es que los representantes del pueblo de hecho no protegen suficientemente los intereses de los grupos no privilegiados de la población.

 

 

Hay que tener en cuenta que Einstein fue un enardecido activista político muy perseguido durante la caza de brujas del senador anticomunista McCarthy por manifestar opiniones de carácter anti-imperialista[cita requerida], aunque se salvó por aportar grandes avances científicos de los que el gobierno estadounidense se valió para su expansión armamentística.

Originario de una familia judía asimilada abogó por la causa sionista, aunque hasta 1947 se había mostrado más partidario de un estado común entre árabes y judíos[cita requerida]. El Estado de Israel se creó en 1948. Cuando Chaim Weizmann, el primer presidente de Israel y viejo amigo de Einstein, murió en 1952, Abba Eban, embajador israelí en EE.UU., le ofreció la presidencia. Einstein rechazó el ofrecimiento diciendo "Estoy profundamente conmovido por el ofrecimiento del Estado de Israel y a la vez tan entristecido que me es imposible aceptarlo". En sus últimos años fue un pacifista convencido y se dedicó al establecimiento de un utópico Gobierno Mundial que permitiría a las naciones trabajar juntas y abolir la guerra[cita requerida]. En esta época lanzó el conocido Manifiesto Russell-Einstein que hacía un llamado a los científicos para unirse en favor de la desaparición de las armas nucleares. Este documento sirvió de inspiración para la posterior fundación de las Conferencias Pugwash que en 1995 se hicieron acreedoras del Premio Nobel de la Paz.

 

http://www.astrocosmo.cl/biografi/b-a_einstein.htm

 

Tímido y retraído, con dificultades en el lenguaje y lento para aprender en sus primeros años escolares; apasionado de las ecuaciones, cuyo aprendizaje inicial se lo debió a su tío Jakov que lo instruyó en una serie de disciplinas y materias, entre ellas álgebra: "...cuando el animal que estamos cazando no puede ser apresado lo llamamos temporalmente "x" y continuamos la cacería hasta que lo echamos en nuestro morral", así le explicaba su tío, lo que le permitió llegar a temprana edad a dominar las matemáticas. Dotado de una exquisita sensibilidad que desplegó e el aprendizaje del violín, Albert Einstein fue el hombre destinado a integrar y proyectar, en una nueva concepción teórica, el saber que muchos hombres de ciencia anteriores prepararon con laboriosidad y grandeza.

Nacido en Ulm, Alemania el 14 de marzo de 1879. Antes cumplir dos años, su familia se trasladó a Munich, donde permaneció hasta 1895, período en el cual vio su vida trastornada cuando su familia se trasladó a Italia después del hundimiento de la firma eléctrica de su padre en Munich. Dejado en Munich para que terminara el año escolar, Albert decidió muy pronto abandonar el curso. y reunirse con su familia, cuando aún le faltaban tres años para terminar su educación media. El colegio no lo motivaba; era excelente en matemáticas y física pero no se interesaba por las otras materias. Así, a la edad de dieciséis años, Albert tuvo la oportunidad de conocer la gran tradición cultural italiana; admirar las obras de Miguel Ángel, que le impactara profundamente, y recorrer Italia pensando y estudiando por su cuenta. Durante este período empezó a contemplar los efectos del movimiento a la velocidad de la luz, un rompecabezas cuya resolución cambiaría para siempre la, física y la cosmología.

En Italia tuvo toda la libertad que quería y gozó por un tiempo de su vida, pero su padre lo obligó a pensar en la universidad. Regresó a Munich y luego se traslado a Zurich, en Suiza, para continuar sus estudios. En esta última ciudad no pudo ingresar a la universidad debido a no haber completado sus estudios secundarios. Alternativamente decidió incorporarse al Instituto Politécnico de Zurich, donde logró estudiar física y matemáticas con Heinrich Weber y Hermann Minkowski. Fue condiscípulo de Marcel Grossmann, que llegó a ser su gran amigo. Pero en la nación helvética, los caminos que tuvo que recorrer Albert Einstein no fueron fáciles. Llegó a conocer el hambre, la segregación académica - por no ser suizo - y también llegó a casarse con una joven matemática croata, Mileva Maric, luego de haber terminado sus estudios, en el año 1900, y de haber obtenido la nacionalidad suiza.

Con la graduación llegó el final de la asignación que le pasaba su familia, y Einstein tuvo que buscar trabajo. Sin recomendaciones -más tarde recordó que "no estaba en buenas relaciones con ninguno de sus anteriores maestros"-, no pudo encontrar ningún trabajo permanente y tuvo que arreglárselas de maestro para dictar clases particulares y/o a tiempo parcial. Después de dos años de empleos esporádicos, Einstein se volvió a beneficiar de la amistad de Marcel Grossmann, a quién había conocido en sus tiempos de estudiantes del Instituto Politécnico de Zurich, que por aquel entonces estaba enseñando matemáticas. A través de su contacto familiar, Grossmann consiguió para Einstein un puesto como experto técnico de tercera clase en la Oficina de Patentes suiza en Berna.

Trabajando en la oficina de patentes de Berna, Einstein pudo escamotear tiempo en su trabajo, gracias al dominio que había logrado en las funciones que desempeñaba, y dedicarlo para sus propios estudios sobre temas tales como las propiedades físicas de la luz. Por las noches trabajaba en ciencias o invitaba a algunos amigos a su apartamento para hablar de física, filosofía y literatura. Estas reuniones solían ser animadas y ruidosas duraban hasta altas horas de la noche, ante la irritación de sus vecinos. Aunque Einstein era esencialmente un solitario, la oportunidad de desarrollar ideas y probarlas sobre los agudos intelectos de sus amigos era valiosísima. Empezó a publicar los resultados de sus investigaciones en uno de los principales diarios científicos, y focalizó sus intuitivos análisis sobre las implicaciones de la cuestión que lo había intrigado años antes: ¿Cómo sería cabalgar en un rayo de luz?

A la temprana edad de veintiséis años, Einstein publicó cuatro trabajos científicos. En uno postula los cuanta de luz, para explicar el efecto fotoeléctrico. El segundo trabajo era acerca del movimiento browniano. Sin duda el trabajo más importante fue el titulado «Acerca de la electrodinámica de los cuerpos en movimiento», donde expone la relatividad especial. En él plantea dos postulados que tienen inmensas consecuencias:

  • Todos los observadores que se mueven entre sí con velocidad constante son equivalentes en lo que a las leyes de la física se refiere. Este es el principio de relatividad que excluye la noción de espacios y tiempos absolutos.
  • La velocidad de la luz en el vacío es la misma para todos los observadores, 299.792 kilómetros por segundo, y es independiente del movimiento relativo entre la fuente de luz y el observador. Este postulado explica el resultado negativo del experimento de Michelson y Morley. En esos primeros años Einstein plantea su famosa relación E = m x c2, el producto de la masa por el cuadrado de la velocidad de la luz dan la energía asociada a una masa m. Masa y energía son dos formas equivalentes. Esto produjo una revolución en nuestra comprensión de la física del Sol y las estrellas y constituye la base de la energía nuclear.

Hacia 1909, fue nombrado profesor del Instituto Politécnico de Zurich. Actividad docente que luego desarrolló en Praga y Berlín. Einstein trabajó afanosamente en una generalización de su teoría de la relatividad. En 1911, formula el principio de equivalencia entre un movimiento acelerado y un campo gravitacional.

Separado de su primera mujer, con la cual tuvo dos hijos varones, contrajo matrimonio con su prima Elsa Einstein en 1915, que también era separada y con dos hijas. Un año después, en 1916, dio a conocer su teoría general de la relatividad, en un periodo pleno de vivacidad y alegría. Escribió a uno de sus amigos: "En el curso de este último mes he vencido el periodo más excitante de mi vida y el más fructífero". En la relatividad general, geometriza la gravitación. Una masa deforma el espaciotiempo a su alrededor y Einstein proporciona las matemáticas que permiten calcular punto a punto la "geometría" en la vecindad de una masa.

Pese a ser de una concepción eminentemente de base de matemática abstracta, la relatividad general tenía un gran número de aplicaciones concretas. Por un lado, explicaba una desconcertante discrepancia en la órbita de Mercurio, el planeta más interior del sistema solar. El perihelio del planeta -el punto en el que está más cerca del Sol- avanzaba cada año en una cantidad significativamente más grande que la predicha por las leyes de Newton. En sus esfuerzos por explicar la diferencia, los astrónomos habían especulado durante algún tiempo en la existencia de un pequeño planeta que orbitara entre Mercurio y el Sol. Einstein demostró que ese cuerpo era innecesario. Su nueva teoría de la gravedad explicaba completamente el misterio de la órbita de Mercurio como una consecuencia del espacio intensamente curvado en las inmediaciones del Sol.

El éxito de esta primera aplicación de la teoría a la observación complació enormemente a Einstein: " Estuve fuera de mí por el éxtasis durante días", escribió a un amigo. La hazaña impresionó también a sus colegas científicos, pero después de todo era una explicación a hechos ya conocidos.

La primera comprobación empírica de la teoría de la relatividad ocurrió, cuando mediciones hechas durante el eclipse total de Sol de 1919 demostraron que sus cálcalos, sobre la curvatura de la luz en presencia de un campo gravitatorio, eran exactos. Cuando se dieron a conocer los resultados en la Royal Society de Londres, su presidente expresó emocionadamente: "No se trata en este caso del descubrimiento de una isla alejada del mundo, sino de todo un nuevo continente de nuevas ideas científicas. Es el más grande descubrimiento concerniente a la gravitación que se haya hecho después que Newton enunció sus principios".

Pero junto con la gloria también se hizo presente el dolor. En poco tiempo había perdido a su hijo Eduardo y fallecían dos de sus hijas: Ilsa y la que había tenido con su primera esposa.

Albert Einstein fue galardonado con el Premio Nobel de Física en el año 1921, por sus investigaciones sobre el efecto fotoeléctrico y sus grandes aportaciones en el terreno de la física teórica.

Desde comienzos de los años "30, y con el avenimiento en Alemania del nazismo, su vida se caracterizó por sus continuos viajes obligados, protegiéndose del régimen gobernante alemán, y por su decidida oposición a éste. Vivió en Coq, Bélgica, accediendo a una invitación de los reyes. Estuvo asimismo en Francia y Gran Bretaña, para finalmente echar raíces en Estados Unidos y, a contar de 1933, establecerse en Princenton. Allí falleció en 1936 su segunda esposa. En 1940, obtuvo la nacionalidad norteamericana y, hasta su muerte, acaecida el 18 de abril de 1955, Einstein trabajó por integrar en una misma teoría las cuatro fuerzas de la naturaleza: gravedad, electromagnetismo, y las subatómica fuerte y débil, las cuales comúnmente reconocemos como «fuerzas de campo».

Einstein escribió numerosos artículos de divulgación para revistas científicas, dictó conferencias que transcribieron, y algunos libros. Los títulos más destacados: Electrodinámica de los cuerpos en movimiento, Fundamentos de la teoría de la relatividad general, Sobre la teoría del campo unificado, Mis ideas y opiniones; La física, aventura del pensamiento, esta última obra escrita en colaboración con Leopold Infeld.

Einstein fue un científico que legó su preeminencia, hasta ahora, sin contrapesos. Genial y con la misma intuición física de Newton, pero con un carácter simpático; un visionario como Kepler, pero que siempre supo mantenerse aterrizado sobre la Tierra, recibió en vida, al igual que Newton, todos los honores y el respeto que un genio tan excepcional merece.

 

 

http://redescolar.ilce.edu.mx/redescolar/publicaciones/publi_quepaso/einstein2.htm

Los padres de Einstein, quienes eran judíos no vigilados, se mudaron de Ulm a Munich cuando Einstein era un infante; después se irían a Milán, Italia. A este tiempo Einstein decidió oficialmente abandonar su ciudadanía alemana. Dentro de un año todavía sin haber completado la escuela secundaria, falló un examen que lo habría dejado seguir un curso de estudios y recibir un diploma como ingeniero eléctrico en el Instituto suizo Federal de Tecnología (el Politécnico de Zurich). El se pasó el año próximo en Aarau cercana a la escuela secundaria de Cantonal, donde disfrutó de maestros excelentes y adelantos de primera índole en física. Einstein volvió en 1896 al Politécnico de Zurich, donde se graduó (1900) como maestro escolar de secundaria en matemáticas y física.

Después de dos cortos años obtuvo un puesto en la oficina Suiza de patentes en Bern. La oficina de patentes requirió la atención cuidadosa de Einstein, pero mientras allí estaba empleado (1902-09), completó un rango asombroso de publicaciones en física teórica. La mayor parte de estos textos fueron escritos en su tiempo libre y sin el beneficio de cierto contacto con la literatura científica. Einstein sometió uno de sus trabajos científicos a la Universidad de Zurich para obtener un Ph.D en 1905. En 1908 le envió un segundo trabajo a la Universidad de Bern y llegó a ser docente exclusivo y conferencista. El año próximo Einstein recibió un nombramiento como profesor asociado de física en la Universidad de Zurich.

Por 1909 Einstein fue reconocido por la Europa de habla alemana como el principal pensador científico. Rápidamente obtuvo propuestas como profesor en la Universidad alemana de Prague y en el Politécnico de Zurich. En 1914 adelantó al puesto más prestigioso y de mejor paga que un físico teórico podría tener en la Europa céntrica: profesor en el Káiser-Wilhelm Gesellschaft en Berlín. Aunque asistió a una entrevista en la Universidad de Berlín, en este tiempo nunca enseñó cursos regulares universitarios. Así, quedó en el cuerpo de profesor de Berlín hasta 1933, de este tiempo hasta su muerte (1955) tuvo una posición de investigación en el Instituto para Estudios Avanzados en Princeton, N.J.

TRABAJOS CIENTÍFICOS.- Los tres papeles de 1905

En el primero de tres papeles seminales publicados en 1905, Einstein examinó el fenómeno descubierto por Max Planck, de que la energía electromagnética parecía ser emitida por objetos radiantes en cantidades que fueron decisivamente discretas. La energía de estas cantidades --la llamada luz-quanta-- estaba directamente proporcional a la frecuencia de la radiación. Esta circunstancia estaba perpleja porque la teoría clásica del electromagnetismo, basada en las ecuaciones de Maxwell y las leyes de la termodinámica, había asumido en forma hipotética que la energía electromagnética consistía de ondas propagadas, compenetrar medianamente llamada la luminiferous ether, y que las ondas podrían contener cualquier cantidad de energía sin importar su diminuto tamaño. Einstein puso en práctica la hipótesis del quántum de Planck para describir la radiación visible electromagnética, o luz. Según el punto de vista heurístico de Einstein, se puede imaginar que la luz consta de bultos discretos de radiación. Einstein usó esta interpretación para explicar el efecto fotoeléctrico, por que ciertamente los metales emiten electrones cuando son iluminados por la luz con una frecuencia dada. La teoría de Einstein, y su elaboración subsecuente, formó en mucho la base para lo que hoy es la Mecánica Cuántica.

El segundo de los trabajos realizado en 1905, Einstein propuso lo que hoy se llama la teoría especial de la relatividad. Al tiempo que Einstein supo que de acuerdo con la teoría de los electrones de Hendrik Antoon Lorentz, la masa de un electrón se incrementa cuando la velocidad del electrón se acerca a la velocidad de la luz, el científico se dio cuenta de que las ecuaciones que describen el movimiento de un electrón de hecho podrían describir el movimiento no acelerado de cualquier partícula o cualquier cuerpo rígido definido. Basó su nueva kinemática en una nueva reinterpretación del principio clásico de la relatividad -que las leyes de la física tenían que presentar la misma forma en cualquier marco de referencia. Como una segunda hipótesis fundamental, Einstein asumió que la rapidez de la luz queda constante en todos los marcos de referencia, como lo formula la teoría clásica Maxweliana. Einstein abandonó la hipótesis del Eter.

Los terceros papeles seminales de Einstein de 1905 concerniente a la estadística mecánica, un campo de estudio elaborado por Ludwig Boltzmann y Josiah Willard Gibbs; Einstein extendió el trabajo de Boltzmann y calculó la trayectoria media de una partícula microscópica por colisiones al azar con moléculas en un fluido o en un gas, observando que sus cálculos podrían explicar el Movimiento Browniano, el aparente movimiento errático del polen en fluidos, que habían notado el botánico británico Robert Brown. Sus resultados fueron también descubiertos por el físico polaco Marian von Smoluchowski y más tarde elaborados por el físico francés Jean Perrin.

La Teoría General de la Relatividad.

Después de 1905, Einstein continuó trabajando en un total de tres de las áreas precedentes. Hizo contribuciones importantes a la teoría del quántum, pero en aumento buscó extender la teoría especial de la relatividad al fenómeno que envuelve la aceleración. La clave a una elaboración emergió en 1907 con el principio de equivalencia.

Einstein elevó esta identidad, que está implícita en el trabajo de Isaac Newton, a un principio que intenta explicar tanto electromagnetismo como aceleración gravitacional según un conjunto de leyes físicas. También supo que cualquier teoría nueva de gravitación tendría que considerarse como una persistente anomalía en el movimiento del perihelio del planeta Mercurio.

Aproximadamente en 1912, Einstein empezó una nueva fase de su investigación gravitacional, con la ayuda de su amigo matemático Marcel Grossmann, por adaptación de su trabajo en cuanto al cálculo del tensor de Tullio Levi-Civita y Gregorio Ricci-Curbastro. El cálculo del tensor grandemente facilitó cálculos en el cuatro-dimensión- espacio-tiempo, una noción que Einstein había obtenido de la elaboración matemática de Hermann Minkowski en 1907 de la teoría propia especial de Einstein de relatividad.

Einstein llamó a su nuevo trabajo Teoría General de la Relatividad. Después de varias salidas falsas publicó (tarde 1915) la forma definitiva de la teoría general. En él las ecuaciones del campo de la gravitación eran covariantes. Por su ventaja del principio, el campo de ecuaciones covariante le permitió observar el movimiento del perihelio del planeta Mercurio. En esta forma original, la relatividad general de Einstein se ha verificado numerosas veces en los pasados 60 años.

Su vida de los últimos años.

Cuando las observaciones británicas del eclipse de 1919 confirmaron sus predicciones, Einstein fue agasajado por la prensa popular. Las vistas políticas de Einstein como un pacifista y un sionista lo deshuesó contra conservadores en Alemania, quienes lo marcaron como un traidor y una derrotista. El éxito público que otorgó sus teorías de relatividad evocaron ataques salvajes en la década de 1920 por los físicos antisemitas Johannes Severo y Philipp Lenard, quienes después de 1932 trataron de crear un Ariano llamado físicos en Alemania.
Sólo como una polémica quedó la teoría de la relatividad de Einstein para los físicos menos flexibles en el marco de la entrega del premio Nóbel para Einstein --se le otorgó no por la relatividad sino por el trabajo de 1905 sobre el efecto fotoeléctrico. Con el levantamiento del fascismo en Alemania, Einstein se mudó (1933) a los Estados Unidos abandonando su pacifismo, confiando en que la nueva amenaza tenía que ser reprimida por la fuerza armada. En este contexto envió (1939) una carta al presidente Franklin D. Roosevelt que instó que los Estados Unidos debían proceder a desarrollar una bomba atómica antes de que Alemania tomase la delantera

A la edad de 59 años, cuando otros físicos teóricos anhelarían el retiro, seguía su original investigación científica y sus co-trabajadores Leopold Infeld y Banesh Hoffmann alcanzaron un mayor resultado para la teoría general de la relatividad.

Pocos físicos siguieron el camino de Einstein después de 1920. Mecánica Cuántica, en lugar de relatividad general, centró su atención. Por su parte Einstein nunca podría aceptar la mecánica cuántica con su principio de indeterminancia, como lo formula Werner Heisenberg y elaborado dentro de uno nuevo por Niels Bohr. Aunque los pensamientos tardíos de Einstein fueron abandonados por décadas, los físicos hoy en día se refieren seriamente al sueño de Einstein--una gran unificación de la teoría física.

Comparte este Goo:

¿Tiene contenido inapropiado?

Comparte este goo con un amigo: